Causality and quantum interference in time-delayed laser-induced nonsequential double ionization
نویسندگان
چکیده
We perform a detailed analysis of the importance of causality within the strong-field approximation and the steepest-descent framework for the recollision-excitation with subsequent tunneling ionization (RESI) pathway in laser-induced nonsequential double ionization (NSDI). In this time-delayed pathway, an electron returns to its parent ion and, by recolliding with the core, gives part of its kinetic energy to excite a second electron at a time t ′. The second electron then reaches the continuum at a later time t by tunneling ionization. We show that, if t ′ and t are complex, the condition that recollision of the first electron occurs before tunnel ionization of the second electron translates into boundary conditions for the steepest-descent contours and thus puts constraints on the saddles to be taken when computing the RESI transition amplitudes. We also show that this generalized causality condition has a dramatic effect on the shapes of the RESI electron momentum distributions for few-cycle laser pulses. Physically, causality determines how the dominant sets of orbits of an electron returning to its parent ion can be combined with the dominant orbits of a second electron tunneling from an excited state. All features encountered are analyzed in terms of such orbits and their quantum interference.
منابع مشابه
Laser-induced nonsequential double ionization in diatomic molecules: one and two-center rescattering scenarios
We investigate laser-induced nonsequential double ionization from aligned diatomic molecules, using the strong-field approximation in its length and velocity gauge formulations. Throughout, we consider that the first electron dislodges the second by electron-impact ionization. Employing modified saddlepoint equations, we single out the contributions of different scattering scenarios to the maxi...
متن کاملNonsequential double ionization of the hydrogen molecule in a few-cycle laser pulse
We present ab initio calculations of the interaction of the hydrogen molecule with an intense few-cycle near-infrared laser pulse beyond the one-dimensional approximation. The results show that the two pathways to nonsequential double ionization of the molecule, namely, the emission of a correlated electron pair near the zeros of the field and the electron emission from the previously excited m...
متن کاملCoulomb repulsion and quantum-classical correspondence in laser-induced nonsequential double ionization
The influence of electron-electron Coulomb repulsion on nonsequential double ionization of rare-gas atoms is investigated. Several variants of the quantum-mechanical transition amplitude are evaluated that differ by the form of the inelastic electron-ion rescattering and whether or not Coulomb repulsion between the two electrons in the final state is included. For high laser intensity, an entir...
متن کاملTime-resolved quantum dynamics of double ionization in strong laser fields.
Quantum calculations of a (1+1)-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two-electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1D coordinates for the electrons. The time...
متن کاملQuantum effects in double ionization of argon below the threshold intensity.
So far, nonsequential double ionization (NSDI) of atoms can be well understood within a semiclassical or even classical picture. No quantum effect appears to be required to explain the data observed. We theoretically study electron correlation resulting from NSDI of argon in a low-intensity laser field using a quantum-mechanical S-matrix theory. We show that quantum interference between the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012